THE MATHEMATICAL GRAMMAR SCHOOL CUP
 - MATHEMATICS -

June 2024.

1. If the pair (x, y) is a solution of the system of equations $2-x^{3}=y, 2-y^{3}=x$, then sum of the coordinates of all pairs is:
(A) $+\infty$
(B) -11
(C) 2
(D) $2+\sqrt{2}$
(E) 4 .
2. On the circumference of a circle are n distinct real numbers, $n \geqslant 3$, in such a way that each number is equal to the product of its immediate neighbors. The sum of squares of all such numbers n are:
(A) 9
(B) 136
(C) 45
(D) 244
(E) 36 .
3. Let $\triangle A B C$ be a triangle with sides $|A B|=21,|A C|=28,|B C|=35$. Let D, E, F be the feet of the angle bisectors from A, B and C, respectively. The area of the triangle $\triangle D E F$ is:
(A) 70
(B) 75
(C) 80
(D) 85
(E) 90 .
4. Let c be a real number. If the set of points in the $x y$-plane which satisfy the equation

$$
x^{4}-c y^{2}+(1-c) x^{2}-2 x^{3}+x^{2} y^{2}+2 c x-c=0
$$

contains the vertices of exactly one equilateral triangle, then the value of c is:
(A) -2
(B) 0
(C) 2
(D) 4
(E) 6 .
5. You are given 19 rods, of lengths $1,2,3, \ldots, 19$ (one rod of each length). The number of ways you can choose three different rods such that they can form a triangle is:
(A) 465
(B) 423
(C) 410
(D) 492
(E) 444
6. There are 101 people seated around a circular table. It is known that one of them is 37 years old and that every person's age is the arithmetic mean of ages of a couple of people (possibly one) seated directly to the left of him. The maximal age of the oldest person at the table under the given conditions is:
(A) 74
(B) 37
(C) 69
(D) 101
(E) 64 .
7. The total number of all numbers with 7 digits formed by all permutations of the digits of the number 1234567 and which are divisible by 7 is:
(A) 640
(B) 680
(C) 700
(D) 720
(E) 740 .
8. Let a, b and c denote the three roots of a polynomial $Q(x)=x^{3}-3 x-1$. If $P \in \mathbb{Z}[x]$ is a monic polynomial (with leading coefficient equal to one) of degree 6 with integer coefficients such that $P(a+\sqrt{3})=0$, $P(b+\sqrt{3})=0$ and $P(c+\sqrt{3})=0$, then the value of $P(1)$ is:
(A) 31
(B) 73
(C) 66
(D) 27
(E) 42 .

GOOD LUCK!!!

