Solution

1. a) It's not always possible. The following counter example works:

The $(0,0)$ square can only be tiled by a domino covering $(0,0)$ and $(0,1)$. Next, the $(0,2)$ square can only be tiled by a domino covering $(0,2)$ and $(0,3)$. This continues by induction for squares $(0,2 \mathrm{k})$ covered by $(0,2 \mathrm{k})$ and $(0,2 \mathrm{k}+1)$ dominos; however, when we get to the $(0, \mathrm{n})$ square, it will be impossible to tile.
b) It is possible. Divide the board into 2 x 2 squares. If a square contains a whole domino, just tile the rest with another domino. If a domino is split between two 2 x 2 squares, then these two squares contain no other dominos. Now tile these pairs in the following manner:

2. We will use the following identity $F_{n} \cdot F_{m}+F_{n-1} \cdot F_{m-1}=F_{m+n-1}$ for the Fibonacci sequence. This identity is easily proven by induction on n. The basis for $n=0$ and $n=1$ are trivial, and the induction step is done by adding the identities for n and $n+1$.
We will use the following lemma: Let F_{c} be the smallest positive Fibonacci number divisible by p^{d}. Then $p^{d} \mid F_{n}$ if and only if $c \mid n$.
Proof: The identity for $m=c+1$ gives $F_{n} \cdot F_{c+1}+F_{n-1} \cdot F_{c}=F_{n+c}$. If $p^{d} \mid F_{n}$ and F_{c}, then it will divide F_{n+c}. This by induction proves $p^{d} \mid F_{k c}$. Now assume there exists n not divisible by c and $p^{d} \mid F_{n}$. Let $n=k c+r$, where $0<r<c$. The identity provides: $F_{k c} \cdot F_{r+1}+F_{k c-1} \cdot F_{r}=F_{k c+r}=$ $F_{n} . p^{d} \mid F_{k c}, F_{n}$, and $F_{k c-1}$ is coprime to $F_{k c}$ and hence coprime to p, therefore $p^{d} \mid F_{r}$. But this contradicts the assumption that F_{c} is the smallest Fibonacci number divisible by p^{d}.
$2024=2^{3} \cdot 11 \cdot 23$. The first Fibonacci number divisible by 8 is $F_{6}=8$ and the first divisible by 11 is $F_{10}=55$. Finding the first Fibonacci number divisible by 23 is more challenging. We will write out the Fibonacci sequence modulo 23 until we get a zero:
$0,1,2,3,5,8,13,21,11,9,20,6,3,9,12,21,10,8,18,3,21,1,22,0, \ldots$
Hence the first Fibonacci number divisible by 23 is F_{22}. Now we use the lemma to conclude that 2024 divides F_{n} if and only if 6,10 , and 22 divide n. The smallest such n is $\operatorname{lcm}(6,10,22)=330$.
3. The inequality can be changed to an equivalent form:

$$
\begin{gathered}
x^{3} y^{3}\left(x^{2}+y^{2}-2\right) \geq(x+y)(x y-1) \\
x^{5} y^{3}+x^{3} y^{5}+x+y \geq 2 x^{3} y^{3}+x^{2} y+x y^{2}
\end{gathered}
$$

Now use weighted AM-GM:

$$
\begin{gathered}
\frac{5 x^{5} y^{3}+5 x^{3} y^{5}+2 x+2 y}{14} \geq x^{3} y^{3} \\
\frac{2 x^{5} y^{3}+4 x+y}{7} \geq x^{2} y
\end{gathered}
$$

Doubling the first inequality and adding it to the second and it's analogue provides the desired inequality.
4. Let D, E, F be the points where incircles of triangles $A B C, A B X, A C X$ touch $B C$ and let the other internal common tangent be s. We claim that s passes through D. Let D^{\prime} be the point of intersection of the common tangent with $B C$. Notice that $D^{\prime} I_{1}$ and $D^{\prime} I_{2}$ are bisectors of $B C$ and s. Therefore the angle $I_{1} D^{\prime} I_{2}=90^{\circ}$. Let the circle with diameter $I_{1} I_{2}$ be k, which intersects $B C$ at two points X and D^{\prime}. Let's prove $E X=D F$.

$$
\begin{gathered}
E X=\frac{B X+A X-A B}{2} \\
D F=C D-C F=\frac{C A+C B-A B}{2}-\frac{C X+C A-A X}{2}=E X
\end{gathered}
$$

Since $O E=O F$ and $\angle O E X=\angle O F D$ then $\triangle O E X \cong \triangle O F D$. Hence $O X=O D$, so D belongs to k. D and D^{\prime} coincide so s passes through a point which doesn't depend on X.

